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ABSTRACT: As we re-examine the known holographic A/ = 1 supersymmetric renormaliza-
tion group flow in four dimensions, we describe the mass-deformed Bagger-Lambert theory
or equivalently the mass-deformed U(2) x U(2) Chern-Simons gauge theory with level k =1
or 2, that has Gy symmetry, by adding a mass term for one of the eight adjoint superfields.
We obtain a detailed correspondence between the fields of AdS, supergravity and compos-
ite operators of the infrared field theory in three dimensions. The geometric superpotential
from an eleven dimensional viewpoint is obtained for M2-brane probe analysis.
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1. Introduction

When one reduces 11-dimensional supergravity theory to four-dimensional N = 8 gauged
supergravity, the four-dimensional spacetime is warped by warp factor that depends on both
four-dimensional coordinates and 7-dimensional internal coordinates. This warp factor
provides an understanding of the different relative scales of the 11-dimensional solutions
corresponding to the critical points in N' = 8 gauged supergravity. An important aspect
of the holographic duals [fl] is the notion that the radial coordinate of AdSs can be viewed
as a measure of energy. A supergravity kink description interpolating between r — oo and
r — —oo can be interpreted as an explicit construction of the renormalization group(RG)
flow between the ultraviolet(UV) fixed point and the infrared(IR) fixed point of the three
dimensional boundary field theory.

It is known [} that there exist five nontrivial critical points for the scalar potential
of gauged N' = 8 supergravity: SO(7)*,SO(7)~,G2,SU(4)~ and SU(3) x U(1). Among
them Gs-invariant 7-ellipsoid and SU(3) x U(1)-invariant stretched 7-ellipsoid are stable
and supersymmetric. The holographic RG flow equations from N = 8 SO(8)-invariant
UV fixed point to /' = 2 SU(3) x U(1)-invariant IR fixed point were constructed in [§.
Moreover, the holographic RG flow equations from N = 8 SO(8)-invariant UV fixed point
to N = 1 Ga-invariant IR fixed point were obtained in [, fl]. See also [l]. An exact solution
to the 11-dimensional bosonic equations corresponding to the M-theory lift of the NV = 2
SU(3) x U(1)-invariant RG flow was found in [[f] and its Kahler structure was extensively



studied in [§]. Furthermore, the M-theory lift of the N” = 1 Gy-invariant RG flow was done
in [f].

Bagger and Lambert(BL) proposed a Lagrangian to describe the low energy dynam-
ics of multiple M2-branes in [f]. See also related papers [[(]. This BL theory is three
dimensional N' = 8 supersymmetric theory with SO(8) global symmetry based on new 3-
algebra and this 3-algebra with Lorentzian signature was proposed by [L1]. The generators
of the 3-algebra consist of the generators of an arbitrary semisimple Lie algebra and two
additional null generators.

Very recently, in [[[J], in order to have arbitrary number of M2-branes, three dimen-
sional Chern-Simons matter theories with gauge group U(N) x U(N) and level k& which
have N’ = 6 superconformal symmetry are constructed. They describe this theory as the
low energy limit of N M2-branes at C* /Zy. singularity. In particular, when N = 2, this
leads to the BL theory. Furthermore, the full SU(4) gz symmetry of [[2] is proved explicitly
in [[3). By examining the holographic N = 2 supersymmetric renormalization group flow
solution among five nontrivial critical points above, in four dimensions, the mass-deformed
BL theory that has SU(3); x U(1)g symmetry is studied in [[4] by the addition of mass
term for one of the four adjoint chiral superfields. We list some relevant works on the
M2-brane theory in [[[5-[67].

Then it is natural to ask what happens for the holographic description with stable
and N = 1 supersymmetric Ga-invariant 7-ellipsoid compactification by deforming three
dimensional Chern-Simons matter theories with gauge group U(N) x U(/V) and level k7
As a first step, we consider the U(2) x U(2) Chern-Simons gauge theory of [[J with level
k =1 or k = 2 which preserves Gy global symmetry.

In this paper, starting from the first order differential equations, that are the supersym-
metric flow solutions in four dimensional N' = 8 gauged supergravity interpolating between
an exterior AdSy region with maximal N' = 8 supersymmetry and an interior AdS; with
one eighth(i.e., N'= 1) of the maximal supersymmetry, we would like to interpret this as
the RG flow in BL theory ! which has OSp(8|4) symmetry broken to the deformed BL
theory which has OSp(1|4) symmetry by the addition of a mass term for one of the eight
adjoint superfields.

An exact correspondence is obtained between fields of bulk supergravity in the AdSy
region in four dimensions and composite operators of the IR field theory in three dimensions.
It is easy to check how the supersymmetry breaks for specific deformation and one can
extract the correct full superpotential including the superpotential before the deformation
also. The three dimensional analog of Leigh-Strassler RG flow in mass-deformed BL theory
in three dimensions is expected by looking at its holographic dual theory in four dimensions
along the line of [I4].

In section 2, we review the supergravity solution in four dimensions in the context of
RG flow, describe two supergravity critical points and present the supergravity multiplet
in terms of G5 invariant ones. The decomposition of SO(8) into G2 is presented.

When we describe BL theory in this paper, the two M2-branes theory(N = 2) is equivalent to U(2)x U(2)
Chern-Simons gauge theory of [@] with level k =1 or k = 2.



In section 3, we deform BL theory by adding one of the mass term among eight
superfields, along the lines of [(3], write down the SO(7)-invariant superpotential in N' = 1
superfields which will be invariant under the G after integrating out the massive superfield
and describe the scale dimensions for the superfields at UV.

In section 4, the OSp(1]|4) representations(energy and spin) and G9 representations
in the supergravity mass spectrum for each multiplet at the A/ = 1 critical point and
the corresponding N' = 1 superfield in the boundary gauge theory are given. For this
computation, the 11-dimensional “geometric” superpotential which reduces to the usual
superpotential for the particular internal coordinate is needed to analyze the M2-brane
analysis.

In section 5, we end up with the future directions.

2. The holographic N/ = 1 supersymmetric RG flow in four dimensions

In N = 8 supergravity [p4], there exists an N’ = 1 supersymmetric Go-invariant vac-
uum [@] To arrive at this critical point, one should turn on expectation values of both
scalar and pseudo-scalar fields where the completely antisymmetric self-dual and anti-self-
dual tensors are invariant under G5 since the Gy is the common subgroup of SO(7)* acting
on the scalar and SO(7)~ acting on the pseudo-scalar respectively. Then the 56-bein can
be written as 56 x 56 matrix whose elements are some functions of these scalar and pseudo-
scalars. Then the Gs-invariant scalar potential of AV = 8 supergravity in terms of the
original variables of [65] is given by, through the superpotential found in [{, f,

o1 oW\t 2 oW
ViNa) =g [7 <8)\ +7p2q2 90 6W=|, (2.1)

where g is a coupling of the theory, we introduce the hyperbolic functions of A as

p = cosh (2—?/5> ,  g¢=sinh <2—\A/§> (2:2)

and the superpotential, which can be read off from the element of A; tensor of the theory,

is a magnitude of complex function on the variables A and «
W()\, a) — ‘p7 + e?iaq7 +7 (p3q4e4ia + p4q3e3ia) ‘ (23)
There exist two critical points and let us summarize these in table 1.

SO(8) critical point. This is well-known, trivial critical point at which the A field
vanishes with arbitrary a and whose cosmological constant A = —6g¢? from (P.1)) and
which preserves N' = 8 supersymmetry.

G2 critical point. There is a critical point at A = /2 sinh™* %(\/g— 1) and o =

cos™! %\/ 3 — v/3 and the cosmological constant A = —% 31/4¢g2. This critical point has

an unbroken N = 1 supersymmetry.



Symmetry A « v W%
SO(8) 0 any —6 g2 1

T _ 1/4
Go v/2 sinh 14/%(\/3_1) coS 1% 3-3 _22156\\//5531/492 36;/55\%

Table 1: Summary of two critical points with symmetry group, supergravity fields(\ and «), scalar
potential(V) and superpotential(W).

For the supergravity description of the nonconformal RG flow from one scale to another
connecting these two critical points, the three dimensional Poincare invariant metric has
the form ds? = 62‘4(’")77#/,,/(136“/(136”/ + dr? where N = (—,+,+) and 7 is the coordinate
transverse to the domain wall. Then the supersymmetric flow equations [f, ff] with (R.3)
and (P.2) are described as

%:8—\7/59@14/, Z—jz%gaaw, %:—\/igw. (2.4)
We’ll come back these flow equations when we discuss about the scalar function at IR in
section 4.

The fields of the N' = 8 theory transforming in SO(8) representations should be de-
composed into Gy representations. According to the decomposition SO(8) — Go given
in ([A.3) which can be obtained from the branching rules of SO(8) — SO(7) by (A1) and
SO(7) — Go by ([A.2) we present in the appendix A, the spin % field breaks into a singlet
and a fundamental of G

Spin g : 8— 17 (2.5)
under SO(8) — G2 and the singlet in square bracket corresponds to the massless graviton
of the N' = 1 theory. From the further branching rule of Go — SU(3) by (A.4) one
sees that the above septet(7) which will be located at A/ = 1 massive gravitino multiplet
breaks into triplet(3) and anti-triplet(3) that enter into the component of N' = 2 short
massive gravitino multiplet as well as a singlet(1) which enters into the component of
N = 2 massless graviton multiplet under the Go — SU(3) breaking. Although the global
symmetry Gso is reduced to SU(3), the N/ = 1 supersymmetry is enhanced to N = 2
supersyminetry.

According to the decomposition SO(8) — G given in ([A.J), one obtains the following
decomposition by a singlet, two fundamentals, adjoint and a symmetric representation

1
Spin 3" 56 — 16 (7] @ 7@ [14] © 27, (2.6)

and the seven Goldstino modes that are absorbed into massive spin % fields (R.B) are
identified with septet in square bracket and the adjoint representation fourteen(14) in
square bracket corresponds to the massless vector multiplet of the N/ = 1 theory. From
the further branching rule of Gy — SU(3) by ([A.4) one sees that the above twenty-
seven representation(27) which will be located at Wess-Zumino multiplet breaks into a



singlet(1)(entering into the component of N' = 2 long massive vector multiplet), triplet(3)
and anti-triplet(3)(entering into the component of A/ = 2 short massive gravitino multi-
plet), sextet(6) and anti-sextet(6)(entering into the component of ' = 2 short massive
hypermultiplet) and octet(8)(entering into the component of N/ = 2 massless vector mul-
tiplet) under the G2 — SU(3) breaking. Moreover, a singlet in (.§) which will be located
at Wess-Zumino multiplet goes to the component of N’ = 2 long massive vector multiplet
while the septet in (P.§) which will be located at massive gravitino multiplet goes to the
component of A/ = 2 long massive vector multiplet and the component of N/ = 2 short
massive gravitino multiplet.

For spin 1 field, one has the folllowing breaking under SO(8) — G4 leading to two
fundamentals and adjoint

Spin 1: 28 - 7TH T @ [14] (2.7)

which implies that the representation fourteen(14) in square bracket corresponds to the
massless vector multiplet of the NV = 1 theory. The two septets which will be located
at massive gravitino multiplet break into two triplets and anti-triplets, that enter into
the component of N' = 2 short massive gravitino multiplet, a singlet which enters into
the component of N' = 2 massless graviton multiplet and a singlet that enters into the
component of AV = 2 long massive vector multiplet under the further Gy — SU(3) breaking.

For spin zero field, the breaking goes to a sum of two singlets, two fundamentals and
two symmetric representations

Spin0: 70— 101@[7TG7 627027 (2.8)

under SO(8) — G2 and the fourteen Goldstone bosons modes are identified with two septets
in square bracket. Their quantum numbers are in agreement with those of massive vectors
in (2.7). The two twenty-seven representations which will be located at Wess-Zumino
multiplet break into two singlets(entering into the component of A/ = 2 long massive
vector multiplet), triplet and anti-triplet(entering into the component of N' = 2 short
massive gravitino multiplet), two sextets and two anti-sextets(entering into the component
of N' = 2 short massive hypermultiplet) and two octets(entering into the component of
N = 2 massless vector multiplet) under the further Go — SU(3) breaking. The remaining
triplet and anti-triplet can be identified with six Goldstone boson modes under the further
G2 — SU(3) breaking. Moreover, two singlets in (-§) which will be located at Wess-
Zumino multiplet enter into the component of N' = 2 long massive vector multiplet.
Finally, from the breaking

Spin 2 : 1— 1] (2.9)

under SO(8) — G, this field is located at N = 1 massless graviton multiplet. Of course,
under the SU(3), this enters into the component of N' = 2 massless graviton multiplet.

We'll reorganize (R.5), (B.6), (B.7), (.§) and (P.9) in the context of supergravity mul-
tiplet with corresponding O.Sp(1]4) quantum numbers in section 4. The singlets are placed



at Wess-Zumino multiplet and massless graviton multiplet, septets are located at mas-
sive gravitino multiplet, the adjoints are at massless vector multiplet and twenty seven
representations sit in another Wess-Zumino multiplet.

3. An N = 1 supersymmetric membrane flow in three dimensional de-
formed theory

Let us describe the deformed BL theory by adding eight mass parameters m1,--- ,mg. The
theory by [[[7 is closely related to the BL theory. Moreover, it is conjectured in [[J] that the
SU(3); x U(1)y-invariant U(2) x U(2) Chern-Simons gauge theory with level k = 1 with the
effective 6-th order superpotential is dual to the background by two units of four-form flux
while the theory at level k = 2 is dual to a Zj orbifold of the background in [{f, G]. Recall
that the self-dual and anti self-dual tensors that are invariant under the G2 symmetry in

N = 8 gauged supergravity are given by B, [, B. il, 7, B. 9.

1234 | <5678 1256 | <3478 3456 | <1278
Yiha = 650 + St ) + (O30 + 600 ) + (85500 + 6]

1357 | <2468 2457 | <1368 2367 | <1458 1467 | 2358
=05k + 050 ) + i + i) + (Oijrt + i) + Ogjra + 0550015
Y = il 1984 S5678) L (51256 _ s3TS) | (53456 _ 51278

i ijki — Qijkl igkl — Qijkl ijkl — Oijkl

+il= (05 — %) + G5k — 0isne ) + (O5m — digk) + (i’ — S55)]- (3.1)
Turning on the scalar fields proportional to YJM yields an SO(7)" invariant vacuum while
turning on the pseudo-scalar fields proportional to YZ]_M yields an SO(7)~ invariant vacuum.
Simultaneous turning on both scalar and pseudo-scalar fields leads to Ge-invariant vacuum
with N/ = 1 supersymmetry. The choice of the mass parameters we describe corresponds
to the self-dual tensor or anti self-dual tensor for the indices 5678, 3478, 3456, 2468, 2457,
2367, 2358, if we shift all the indices by adding 2 to (B.I]), besides an identity. In [(J]
there are three mass parameters while in [[[4] there exist four mass parameters. Then the
fermionic mass terms from [f]] are given by

Lim = _%hab\i’a (m1F78910 4 mp 56910 _ ) 5678 ) 146810
+ msD 407 4 mgT4589 — g TTI0 1) Wl (3.2)
The indices a,b,--- run over the adjoint of the Lie algebra. Then the corresponding

fermionic supersymmetric transformation is given by

5m\I/a — (m1F78910 + m2F56910 . m3P5678 + m4r46810

+ msDA70 4 gD 4589 — 045710 _ mgl) X{Tre. (3.3)

We impose the constraints on the e parameter that satisfies the % BPS condition(the number
of supersymmetries is two):

F56786 —

[56910, _ 78910, _ 146810, _ 134910, _ 3478, _ 3456,

_ _pA6T9. _ 4S89, _ _pASTIO. _ (3.4)



The first three conditions in (B.4) provide % BPS condition and the remaining seven con-
ditions restrict to the € parameter further and we are left with the right number of super-
symmetry we are dealing with.

Let us introduce the bosonic mass term which preserves N’ = 1 supersymmetry:

1

ﬁb.m. = _§habX?(m2)IJXS' (35)

Using the supersymmetry variation for X§, 0X¢ = iel'; ¥, and the supersymmetry vari-
ation for U* by the equation (B-3), the variation for the bosonic mass term (B.§) plus the
fermionic mass term (B.2) leads to

oL = ’ihabX}l(m2)]J\i’bPJ€
—ihab‘If“ (m1F78910 + m2r56910 _ m3F5678 + m4r46810

+ msD070 4 D498 — g, 45710 _ mgl)2 X?F[E. (3.6)
In order to vanish this, the bosonic mass term (m2) 17 should take the form

(mz)UFJ — (m1 +mg —m3+m4—m5—m6+m7—m8)2fg
+ m1+m2—mg—m4—|—m5—|—m6—m7—m8)2f4

2

I's

+

m1 —mg +m3+ my —ms + Mg — My — Mg
ml—m2+m3—m4+m5—m6+m7—m82
2

I';

)

)

)
my — mg — ma + my + ms — mg — my 4+ mg)*Tg

)

)

+ 4+

+(m1 + mg +m3 — my — ms — mg — my +mg)*Ty

(
(
(
(mq — mg —mg — my — ms + mg + m7 + mg
(
(
+(my + mg + m3 + my + ms + mg + my + mg)*T1o (3.7)

by computing the mass terms for second and third lines of (B.6) explicitly.?2 When all the
mass parameters are equal

mip = Mo = M3 = M4 = My = Mg = M7 = Mg = M,

then the diagonal bosonic mass term in (B.7) has nonzero component only for 1010 and
other components(33,44, 55,66, 77,88 and 99) are vanishing. This resembles the structure
of Al7 tensor of AdS, supergravity where the A7 tensor has two distinct eigenvalues
with degeneracies 7 and 1 respectively [B3, ff]. The degeneracy 1 is related to the N' =1
supersymmetry. Then one obtains the bosonic mass term which appears in (B.§)

(m?)1; = diag(0,0,0,0,0,0,0,64m?). (3.8)

2The relevant terms become m? +m2 +m2 +m3 +mZ +m2+m2 +m2 + 2(—maima — mamz — msme +
5678 56910 4679
mamg)T°%" +2(mima+mame+msms —mams) [0 +2(mima+mamr —mame —msms ) +2(mims +
46810 45710
mame + mamz — mams)I’ + 2(—mime — mams — mamyg + mymsg)’ + 2(mim7 + mamy + mams —

F78910

mamg)F4589 + 2(mams + mams + memr — mims) explicitly. We also used the conditions (@)



Let us introduce the eight AV = 1 superfields as follows:

Q1 =Xz +---, Py=Xy+---, Py =X5+---,

Qy=Xe+-, Q5 =X7+---, Qg =Xg+---,

Q7 = Xg+---, Qg = X0+, (3.9)
where we do not include the N/ = 1 fermionic fields. The ®q,--- ,®; constitute a fun-

damental 7 representation of G while ®g is a singlet 1 of G5. The potential in the BL
theory [[] is given by

1 d b h
sz henleal XEXGX e f gt XT XX

where x is a Chern-Simons coefficient. In terms of N/ = 1 superfields, this contains the
following expressions

1

?habfcde“ffg,lz (@f{@g@g@{fbg@g + other terms)

by using the relation (@) between the component fields and superfields. This provides the
superpotential and it is given by [B9] with (B.1)

1 ..
— JabeaY M Tr @7 0G0L D7 (3.10)

This form has manifest SO(7)" global symmetry and by fixing the coefficients of N' = 1
superspace action [9] this global symmetry is enhanced to SO(8) symmetry with maximal
supersymmetry. In N’ = 1 language, the superpotential consisting of the mass term (B.§)
and quartic term (B.I() where we absorbed the « into the structure constant is given by

1
W = SMTr ®Z + (Tr 1Dy ®; P + other 6-terms with Pg)
+ (Tr &30, P5P + other 6-terms without Pg) .

The fourteen terms except the first term are the superpotential required by N' = 8 su-
persymmetry and the first term breaks A/ = 8 down to N' = 1. The theory has matter
multiplet in seven flavors ®1, @5, -- , &7 transforming in the adjoint with flavor symmetry
under which the matter multiplet forms a septet(7) of the N’ = 1 theory. Therefore, we
turn on the mass perturbation in the UV and flow to the IR. This maps to turning on
certain fields in the AdS, supergravity where they approach to zero in the UV(r — o0)
and develop a nontrivial profile as a function of r as one goes to the IR(r — —oc). We can
integrate out the massive scalar ®g with adjoint index at a low enough scale and this re-
sults in the 6-th order superpotential Tr(Y *7*®;®;®1)2 + Tr €;jkimnpY T8 (0, ®,, @, P, ).
The scale dimensions of eight superfields ®;(i = 1,2,--- ,8) are A; = % at the UV. This is
because the sum of A; is equal to the canonical dimension of the superpotential which is
3 —1 =2 [f(). By symmetry, one arrives at A; = %.

Thus we have found N' = 1 superconformal Chern-Simons theories with global G5 sym-
metry and £ = 1 Chern-Simons gauge theories with Ga-invariant superpotential deforma-
tion are dual to the holographic RG flows in [[]. We expect that Go-invariant U(N) x U(N)



Boundary Operator | Energy | Spin 0 | Spin %
T
so(cned)’ | m | o
EO + % 1
Eg+1 1

Table 2: The OSp(1]4) representations(energy, spin) and G5 representations singlets in the super-
gravity mass spectrum for Wess-Zumino multiplet at the A' = 1 critical point and the corresponding
N =1 superfield S in the boundary gauge theory.

Chern-Simons gauge theory for N > 2 with k& = 1,2 where there exists an enhancement
of N = 8 supersymmetry [[[3, [J] is dual to the background of [f] with N unit of flux.
In next section, the gauge invariant composites in the superconformal field theory at the
IR in three dimensions are mapped to the corresponding supergravity bulk fields in four
dimensions.

4. The OSp(1]|4) spectrum and operator map between bulk and boundary
theories

A further detailed correspondence between fields of AdSy supergravity in four dimensions
and composite operators of the IR field theory in three dimensions is described in this
section.

The even subalgebra of the superalgebra OSp(1]4) is Sp(4, R) ~ SO(3,2) that is the
isometry algebra of AdS; [[(1]. The maximally compact subalgebra is then SO(2)z x SO(3)s
where the generator of SO(2)g is the hamiltonian of the system and its eigenvalues E are
the energy levels of states for the system, the group SO(3)g is the rotation group and
its representation s describes the spin states of the system. A supermultiplet, a unitary
irreducible representations(UIR) of the superalgebra OSp(1|4), consists of a finite number
of UIR of the even subalgebra and a particle state is characterized by a spin s and energy
E.

Let us classify the supergravity multiplet, which is invariant under G5, we explained
in section 2 and describe them in the three dimensional boundary theory.

Wess-Zumino multiplet. The conformal dimension A, which is irrational and unpro-
tected, is given by A = Ey > % Let us denote S(x,#), that is a scalar superfield, by
the corresponding boundary operator in boundary gauge theory. This scalar field has a
dimension %(6 +4/3) in the IR. We'll come back this issue at the end of this section.
The corresponding OSp(1]4) representations and corresponding N' = 1 superfield in three
dimensions are listed in table 2.

Wess-Zumino multiplet. The conformal dimension A for the lowest component of this
multiplet is given by A = Fy > % The AdS, supergravity multiplet corresponds to the
scalar superfield ®(x,0). That is, in the 6 expansion, there are three component fields
in the bulk. Then the bilinear of the seven ®; superfields by symmetrizing the two Go



Boundary Operator | Energy | Spin 0 | Spin %
Tr &;®)) Ey 27
EO + % 27
Ey+1 27

Table 3: The OSp(1|4) representations(energy, spin) and Ga symmetric representations in the
supergravity mass spectrum for Wess-Zumino multiplet at the A" = 1 critical point and the corre-
sponding N = 1 superfield in the boundary gauge theory.

Boundary Operator | Energy | Spin % Spin 1 | Spin %
Tr DaWﬁ(I)j E() 7
Eo+3| 7 7
FEy+1 7

Table 4: The OSp(1|4) representations(energy, spin) and Go fundamental representations in the
supergravity mass spectrum for massive gravitino multiplet at the A" = 1 critical point and the
corresponding A/ = 1 superfield in the boundary gauge theory.

indices present in them provides a symmetric representation of Go, 27, corresponding to
Tr ®;®;). Note that from the tensor product between two 7’s of SO(7), one writes down
7x7=1,% 21, ® 27,. Using the branching rule of ([A.9), this leads to 1 &7 & 14 & 27,
under the breaking SO(7) into Gy. Therefore, one obtains the symmetric representation
27 of Gy. Group theoretically, the structure of this Wess-Zumino multiplet and N/ = 2
short massive hypermultiplet in [[4] looks similar. The symmetric representations 6 and
6 of SU(3) originate from only this symmetric representation 27 of Gy when we look at
the branching rule by (A.4). As we observed in section 2, through the supersymmetry
enhancement from N = 1 to N/ = 2, some other components among the repesentation 27
of G5 distribute into other A/ = 2 multiplets while the symmetric representations 6 and 6
of SU(3) remain and constitute N' = 2 short massive hypermultiplet. The corresponding
OSp(1]4) representations and corresponding superfield are listed in table 3.

Massive gravitino multiplet. The conformal dimension A is given by A = Ey > 2.
This corresponds to spinorial superfield ®,5(x,6). In the 6 expansion, the component
fields in the bulk are located with appropriate quantum numbers. Then one can identify
Tr D, Wps®; with 7 of G2. Although the group structure between this massive gravitino
multiplet and N = 2 short massive gravitino multiplet is different from each other, they
have both fundamental representations and one obtains this multiplet when one takes
N = 1 superderivative D, on N/ = 2 short massive gravitino multiplet in [[4]. Some of
the fundamental and anti-fundamental representations 3 and 3 of SU(3) in N/ = 2 theory
originate from this fundamental representation 7 of G2 when we look at the branching rule
by (A.4) and some of them come from others 14 and 27 of Ga. As we observed in section
2, from N =1 to N = 2, the singlets among the representation 7 of G5 enter into N’ = 2
massless graviton multiplet or long massive vector multiplet. The corresponding OSp(1|4)
representations and corresponding superfield are listed in table 4.

— 10 —



Boundary Operator Energy Spin % Spin 1 | Spin % Spin 2
Tr D, TP Ey=3 [14]
Ey+ 5 = 2 [14]
DYTPY Ey=3 1]
EO + 7 = 3 [1]

Table 5: The OSp(1]4) representations(energy, spin) and G2 representations(adjoints and singlets)
in the supergravity mass spectrum for massless vector and graviton multiplets at the ' = 1 critical
point and the corresponding N = 1 superfields in the boundary gauge theory.

N =1 massless graviton multiplet. The bulk field ®,3,(z,6) can be identified with
DaTﬁ'Y(w,H) where Tﬁ”/(x,ﬁ) is the stress energy tensor superfield. In components, the
 expansion of this superfield has the N/ = 1 supercurrent and the stress energy tensor.
Also in this case, one obtains this multiplet when one takes A/ = 1 superderivative D® on
N = 2 massless graviton multiplet in [I4]. The conformal dimension A = % The structure
of this massless graviton multiplet and N' = 2 massless graviton multiplet looks similar
to each other. Some of the singlet representation 1 of SU(3) in N/ = 2 theory originate
from this singlet representation 1 of G when we look at the branching rule by (A.4) and
some of them come from 7 and 27 of G3. The corresponding OSp(1|4) representations and
corresponding superfield are listed in table 5.

N = 1 massless vector multiplet. This conserved vector current is given by a scalar
superfield Dy.J4(z,0). This transforms in the adjoint representation of Gy flavor group.
The boundary object is given by Tr Do®TA® where the generator T4 is N x N matrix
with A =1,2,--- ,N? — 1 for general N. One obtains also this multiplet when one takes
N = 1 superderivative D, on A = 2 massless vector multiplet in [[[4] although the group
structure is different from each other but they have both adjoint representations. The
conformal dimension A = % By taking a tensor product between two 7’s, one gets this
adjoint 14 of G representation as in Wess-Zumino multiplet above. The structure of
this massless vector multiplet and N’ = 2 massless vector multiplet resembles each other.
Some of the adjoint representation 8 of SU(3) in A/ = 2 theory originate from this adjoint
representation 14 of G2 when we look at the branching rule by (A:4) and some of them
come from 27 of G5. As we observed in section 2, from N = 1 to N = 2, triplets and
anti-triplets among the representation 14 of Gy enter into N’ = 2 short massive gravitino
multiplet. The corresponding OSp(1|4) representations and corresponding superfield are
listed in table 5 also.

The 11-dimensional metric with warped product ansatz is given by [63, 2, B, fd]
dst) = ds} + ds? = Az, y) " g (2) da''da” + Gon (. y) dy™ dy",

where p,v =1,2,--- ;4 and m,n =1,2,--- | 7. The 4-dimensional metric which has a 3-
dimensional Poincare invariance takes the form g, () de#dz” = e2Ar) Ny v/ dxt dx¥" 4 dr?,
where 1, = (—,+,+) and 7 = 2% is the coordinate transverse to the domain wall as
in section 2 and the scale factor A(r) behaves linearly in » at UV and IR regions. The
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metric formula by [p5] generates the 7-dimensional metric from the two input data of AdSy
vacuum expectation values for scalar and pseudo-scalar fields (A, ). Let us introduce the
redefined fields [f]

a= cosh(%) + cos « SiHh(%) , b= cosh<%> —cos sinh(%) .

We recall that the two input data of (a,b) are

for the SO(8)-invariant UV critical point whereas

NN Y as
a= 5 = 5 .

for the Go-invariant IR critical point.3

From the standard metric of a 7-dimensional ellipsoid, the diagonal 8 x 8 matrix Q ap
is given by Qap = diag (b2, b2, b2, b%, b2, b2, b?, a2) [, bd] and the 7-dimensional ellipsoidal
metric ds%Lm = dXAQ;UlB dX®B where X4 is a coordinate for R® and A,B = 1,2,--- ,8
arises via

ds? = G (z,y) dy™dy™ = VAa L* (a_2 €2 dh* 4 sin” 0 dQ2 ) (4.3)
where the quadratic form ¢2 is given by [63, B, 4]

€2 = a?cos? 0 + b?sin? 0 (4.4)
and the warped factor A is given by
A=ales. (4.5)

The metric dQ2 on S® ~ G5/ SU(3) in ([£J) preserves the Fubini-Study metric on CP? [[73,
d]. Note that the corresponding base 6-sphere for SU(3); x U(1) g-invariant sector [[f4, [L4]
is given by CP? which is the homogeneous space SU(4)/[SU(3) x U(1)] characterized by
the Kahler form J [73, B4

As in [[, let us go to the SL(8, R) basis and introduce the rotated vielbeins

Uy = u, (Tr)™, Vil = yiaeb(ry )b
UijIJ = Uiyqb(ru)aba Vijrs = ”ijab(PU)ab

where 28-beins and gamma matrices are the same as those in [[f]. Now let us define

1 1
Agjrg = 7 (U™ + Vij1s) s B} = 7 (U5 = Vij1s),
ci = % (Uij;u n VijIJ) . Dl = % (_UijIJ n VijIJ) .

3The scalar potential (EI) can be rewritten as V(a,b) = £a” (a® — 28a°b + 14ab* — 84b° + 49ab*).

1
8

- 12 —



Then “geometric” T-tensor can be written as

~kij _ 1

L 168x/§

and furthermore the “geometric” Aj-tensor is given by

v <AlmJKkaKI 5L TMT] — Bln‘iKC’ 5J xLxI) (4.6)

AP =T, (4.7)

The idea of [7d] is to replace 67/ in the original T-tensor with z'z7 but 6} remains un-
changed, as in ([L.6).

Now the 88 component of 111” , ng, provides the “geometric” superpotential in terms
of a,b and § and from the complete expressions in appendix B (B.1), one gets

= |ABP = a \/(a2 cos2 0 + b2sin? §)2 — 16(ab — 1) sin?  cos? 6. (4.8)

This superpotential is different from Wys in [fj], in general. More explicitly, one obtains?

W2, =4W3; + a% (=2 + ab)® (=1 + ab) (3 + 4cos 20)* .

1
4W?
In particular, when 6 = cos™! %, one obtains Wy = W = Wjy;. Although there are
two different solutions for the superpotential, Wy, and W4y, in 11-dimensions, there exists
the same superpotential W in 4-dimensions. For SO(8) maximal A/ = 8 supersymmetric
critical point with (f.1)), it is easy to check Wy, = 2Wyuy = W = 1.

Performing the M2-brane probe analysis [[7, [, §], one can compute the effective
Lagrangian for the probe moving at a small velocity transverse to its world-volume. If the
potential vanishes, then the kinetic term gives us to a metric on the corresponding moduli
space. By combining some part of determinant for the induced metric for M2-brane world-
volume with 3-form potential, one reads off the corresponding potential. Then the potential
has the factor

A"3 — Wys = a (a2 cos? 0 + b? sin? 9)

1- 1 16 (ab — 1) sin? § cos2 6
(a2 cos? § + b2 sin? 9)2

where we substituted ([L.5), (f.4) and ([L.g). This potential vanishes for § = Z. Of course,
there exists trivial solution for # = 0 where the metric becomes zero. On this subspace,
the metric on the 7-dimensional moduli space transverse to the M2-branes is given by

d82|moduli = \/EL2 eA dQ% + eA a% b2 dT‘2 (4‘9)

where we used the fact that for § = 0 we have simple relations from (f4) and (£5): £ = b?
and A = a~1b73.

4The superpotential W is the same as @) W =

é\/aS a? 4+ 7b2)* — 112 (ab — 1)] and the superpo-
tential by [E] is War = 2

o a® [(48(1 — ab) + (a® — b%)(a® 4 7b%)) cos® 6 + 8 (1 — ab) + b* (a® + Tb%)].
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As we approach the IR critical point, we can introduce a new radial coordinate
u =~ 340 with fl—? = %\/é\/abu to obtain the asymptotic form for the metric by in-
serting (.9), (B-4) and the IR critical value of W in table 1 into ([L.9)

3,1
ds* [ moduli = 5;%)’8 L? (du2 + gu2 dQ§> : (4.10)

Also at the IR critical point, one can see that

d [ A _2\/E A(r)
dr (e ﬁ) =750 n

by using the supersymmetric flow equations (R.4) we introduced in section 2. The mass
spectrum for the 4/\ around Gy fixed point was computed in [fi] and it is % (6 + V3).

36v/231/4
At the IR end of the flow, A(r) ~ +ﬁr with ¢ = % from the solution (B.4) for
36v231/4
361/231/4 Vo8 .  Am
A(r) and W = TV from table 1. Moreover, u ~ e L ~ e 2 above. Then
S becomes S = (®? + @%)g in the boundary theory. The power g comes from the

factor in the metric (fL.10) of the moduli. Obviously, from the tensor product between 7
and 7 of Gy representation, one gets a singlet 1 as before. For the superfield S(z,8), the
action looks like [ d3zd?0S(z,0). The component content of this action can be worked out
straightforwardly using the projection technique. This implies that the highest component
field in #-expansion, the last element in table 2, has a conformal dimension 6 + % 3 in the
IR as before.

We have presented the gauge invariant combinations of the massless superfields of the
gauge theory whose G2 quantum numbers exactly match the four multiplets in tables 3,4, 5
observed in the supergravity. There exists one additional Wess-Zumino multiplet in table
2 which completes the picture.

5. Conclusions and outlook

By analyzing the mass-deformed Bagger-Lambert theory(or the mass-deformed U(2) x U(2)
Chern-Simons gauge theory with level £ = 1 or 2), preserving G2 symmetry, with the addi-
tion of mass term for one of the eight adjoint superfields, one identifies an A/ = 1 supersym-
metric membrane flow in three dimensional deformed theory with the holographic N’ = 1
supersymmetric RG flow in four dimensions. Therefore, the N' = 8 gauged supergravity
critical point is indeed the holographic dual of the mass-deformed ' = 8 BL theory(or
the mass-deformed U(2) x U(2) Chern-Simons gauge theory with level k& = 1 or 2). So
far, we have focused on the particular mass deformation (B.J) preserving G5 symmetry. As
we mentioned in introducation, there are three more nonsupersymmetric critical points,
SO(7)*,SO(7)” and SU(4)~. It would be interesting to find out all the possible cases
for the mass deformations and see how they appear in the AdS; x X" background in the
context of U(N) x U(N) Chern-Simons gauge theory.
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A. Branching rules

In this appendix we list some useful branching rules with the help of [f§]. In order to
obtain the branching rule SO(8) — G2, we need to consider the following two branching
rules, SO(8) — SO(7) and SO(7) — Ga. The former is given by

SO(8) — SO(7) branching rule:

1—-1,

8, — 8§,

8 — 147,
8. — 8,

28 — 7@ 21,
35, — 35,
35, - 107D 27,
35, — 35,
56, — 8 G 48,
56, — 21 &4 35,
56, — 8 D 48 (A.1)

and the latter is given by
SO(7) — G2 branching rule:

1—1,

7T— 17,

8 —-147,

21 — 7314,

27 — 27

35 - 107027,

48 — 7D 14 @ 27. (A.2)

Combining the two results (A1) and ([A.9), one obtains the following branching rule which
is necessary to analyze the section 2.
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SO(8) — G2 branching rule:

1—-1,

8 =147,

28 - 707D 14,

56 - 1070701427,

0 —-10107DT7TP27TD27. (A.3)

It is better to present the following branching rule for the correpondence between N = 1
and N = 2 critical points.

G2 — SU(3) branching rule:

1—1,

7—-103d3,

14 - 33338,

27 > 193530606 d8. (A.4)

B. Explicit form for ﬁl-tensor

The R® coordinates x; in ([.G) are related to the ones X in (f.g) as follows:

X, = %(a:g—x(;), Xo E—%((L’g—zW),

X3 = %(m—xg), X4E—%(x1—x5),

X5 = %(a:g + ), X6 = %(a:g + x7),

X; = %(m—kxg), ng%(wl—kxg,):cosH

and we list here for the expressions for A;-tensor in (D)

~ i/ 3
g o Qtativol+ab) [8+1ﬁb—8ab+ 126% — 12ab? + a%b? + 4b° — 6ab®
(2+a+b)2

+0 '+ (@ —b)(2+a+b)(8+a® + a(2 — 6b) +b(2 + b)) cos? O + v —1+ ab
X (—4i(1+b)(2+b(2 — a+ b)) +4i(2 + a+b)(24+a+a* + b — 2ab + b*) cos® 9)],

- 1

A = [aa +a)(® + (a—b)(a+b)cos2 ) — 4(2 + b)(—1 + ab) X2,
—iv/—=1+ ab(a(b® + (a — b)(a + b) cos® ) + 4(—2 + (=1 + a)b)an)} ,

amn A [ oy = _ _

Al _m[ (=24 (=1 + a)b)vV—1 + ab— (2 + b)( 1+ab)}Xan, m#n

~ i/ 3

A = A1 +3a+z 1+ab) [2—2ab+i(a—b)\/—l—i—ab]XmCOSH, (B.1)
24+a+0b)2(a—b+2ivV—1+ab)
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where m,n = 1,2,---,7. Also one can obtain the full expressions for the gg—

tensor of the theory which we do not present here. We have checked from these gl

and gg—tensors that the scalar potential has a simple form and it is given by V =

2a3

[a? + b? + (a® — b%) cos 29]2.
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