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1. Introduction

When one reduces 11-dimensional supergravity theory to four-dimensional N = 8 gauged

supergravity, the four-dimensional spacetime is warped by warp factor that depends on both

four-dimensional coordinates and 7-dimensional internal coordinates. This warp factor

provides an understanding of the different relative scales of the 11-dimensional solutions

corresponding to the critical points in N = 8 gauged supergravity. An important aspect

of the holographic duals [1] is the notion that the radial coordinate of AdS4 can be viewed

as a measure of energy. A supergravity kink description interpolating between r → ∞ and

r → −∞ can be interpreted as an explicit construction of the renormalization group(RG)

flow between the ultraviolet(UV) fixed point and the infrared(IR) fixed point of the three

dimensional boundary field theory.

It is known [2] that there exist five nontrivial critical points for the scalar potential

of gauged N = 8 supergravity: SO(7)+,SO(7)−, G2,SU(4)− and SU(3) × U(1). Among

them G2-invariant 7-ellipsoid and SU(3) × U(1)-invariant stretched 7-ellipsoid are stable

and supersymmetric. The holographic RG flow equations from N = 8 SO(8)-invariant

UV fixed point to N = 2 SU(3) × U(1)-invariant IR fixed point were constructed in [3].

Moreover, the holographic RG flow equations from N = 8 SO(8)-invariant UV fixed point

to N = 1 G2-invariant IR fixed point were obtained in [4, 5]. See also [6]. An exact solution

to the 11-dimensional bosonic equations corresponding to the M -theory lift of the N = 2

SU(3) × U(1)-invariant RG flow was found in [7] and its Kahler structure was extensively
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studied in [8]. Furthermore, the M -theory lift of the N = 1 G2-invariant RG flow was done

in [5].

Bagger and Lambert(BL) proposed a Lagrangian to describe the low energy dynam-

ics of multiple M2-branes in [9]. See also related papers [10]. This BL theory is three

dimensional N = 8 supersymmetric theory with SO(8) global symmetry based on new 3-

algebra and this 3-algebra with Lorentzian signature was proposed by [11]. The generators

of the 3-algebra consist of the generators of an arbitrary semisimple Lie algebra and two

additional null generators.

Very recently, in [12], in order to have arbitrary number of M2-branes, three dimen-

sional Chern-Simons matter theories with gauge group U(N) × U(N) and level k which

have N = 6 superconformal symmetry are constructed. They describe this theory as the

low energy limit of N M2-branes at C4/Zk singularity. In particular, when N = 2, this

leads to the BL theory. Furthermore, the full SU(4)R symmetry of [12] is proved explicitly

in [13]. By examining the holographic N = 2 supersymmetric renormalization group flow

solution among five nontrivial critical points above, in four dimensions, the mass-deformed

BL theory that has SU(3)I × U(1)R symmetry is studied in [14] by the addition of mass

term for one of the four adjoint chiral superfields. We list some relevant works on the

M2-brane theory in [15]–[62].

Then it is natural to ask what happens for the holographic description with stable

and N = 1 supersymmetric G2-invariant 7-ellipsoid compactification by deforming three

dimensional Chern-Simons matter theories with gauge group U(N) × U(N) and level k?

As a first step, we consider the U(2) × U(2) Chern-Simons gauge theory of [12] with level

k = 1 or k = 2 which preserves G2 global symmetry.

In this paper, starting from the first order differential equations, that are the supersym-

metric flow solutions in four dimensional N = 8 gauged supergravity interpolating between

an exterior AdS4 region with maximal N = 8 supersymmetry and an interior AdS4 with

one eighth(i.e., N = 1) of the maximal supersymmetry, we would like to interpret this as

the RG flow in BL theory 1 which has OSp(8|4) symmetry broken to the deformed BL

theory which has OSp(1|4) symmetry by the addition of a mass term for one of the eight

adjoint superfields.

An exact correspondence is obtained between fields of bulk supergravity in the AdS4

region in four dimensions and composite operators of the IR field theory in three dimensions.

It is easy to check how the supersymmetry breaks for specific deformation and one can

extract the correct full superpotential including the superpotential before the deformation

also. The three dimensional analog of Leigh-Strassler RG flow in mass-deformed BL theory

in three dimensions is expected by looking at its holographic dual theory in four dimensions

along the line of [14].

In section 2, we review the supergravity solution in four dimensions in the context of

RG flow, describe two supergravity critical points and present the supergravity multiplet

in terms of G2 invariant ones. The decomposition of SO(8) into G2 is presented.

1When we describe BL theory in this paper, the two M2-branes theory(N = 2) is equivalent to U(2)×U(2)

Chern-Simons gauge theory of [12] with level k = 1 or k = 2.
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In section 3, we deform BL theory by adding one of the mass term among eight

superfields, along the lines of [63], write down the SO(7)+-invariant superpotential in N = 1

superfields which will be invariant under the G2 after integrating out the massive superfield

and describe the scale dimensions for the superfields at UV.

In section 4, the OSp(1|4) representations(energy and spin) and G2 representations

in the supergravity mass spectrum for each multiplet at the N = 1 critical point and

the corresponding N = 1 superfield in the boundary gauge theory are given. For this

computation, the 11-dimensional “geometric” superpotential which reduces to the usual

superpotential for the particular internal coordinate is needed to analyze the M2-brane

analysis.

In section 5, we end up with the future directions.

2. The holographic N = 1 supersymmetric RG flow in four dimensions

In N = 8 supergravity [64], there exists an N = 1 supersymmetric G2-invariant vac-

uum [65]. To arrive at this critical point, one should turn on expectation values of both

scalar and pseudo-scalar fields where the completely antisymmetric self-dual and anti-self-

dual tensors are invariant under G2 since the G2 is the common subgroup of SO(7)+ acting

on the scalar and SO(7)− acting on the pseudo-scalar respectively. Then the 56-bein can

be written as 56×56 matrix whose elements are some functions of these scalar and pseudo-

scalars. Then the G2-invariant scalar potential of N = 8 supergravity in terms of the

original variables of [65] is given by, through the superpotential found in [4, 5],

V (λ, α) = g2

[
16

7

(
∂W

∂λ

)2

+
2

7p2q2

(
∂W

∂α

)2

− 6W 2

]
, (2.1)

where g is a coupling of the theory, we introduce the hyperbolic functions of λ as

p = cosh

(
λ

2
√

2

)
, q = sinh

(
λ

2
√

2

)
(2.2)

and the superpotential, which can be read off from the element of A1 tensor of the theory,

is a magnitude of complex function on the variables λ and α

W (λ, α) = |p7 + e7iαq7 + 7
(
p3q4e4iα + p4q3e3iα

)
|. (2.3)

There exist two critical points and let us summarize these in table 1.

SO(8) critical point. This is well-known, trivial critical point at which the λ field

vanishes with arbitrary α and whose cosmological constant Λ = −6g2 from (2.1) and

which preserves N = 8 supersymmetry.

G2 critical point. There is a critical point at λ =
√

2 sinh−1
√

2
5(
√

3 − 1) and α =

cos−1 1
2

√
3 −

√
3 and the cosmological constant Λ = −216

√

2
25

√

5
31/4g2. This critical point has

an unbroken N = 1 supersymmetry.
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Symmetry λ α V W

SO(8) 0 any −6 g2 1

G2

√
2 sinh−1

√
2
5(
√

3 − 1) cos−1 1
2

√
3 −

√
3 −216

√

2
25

√

5
31/4g2

√
36

√

2 31/4

25
√

5

Table 1: Summary of two critical points with symmetry group, supergravity fields(λ and α), scalar

potential(V ) and superpotential(W ).

For the supergravity description of the nonconformal RG flow from one scale to another

connecting these two critical points, the three dimensional Poincare invariant metric has

the form ds2 = e2A(r)ηµ′ν′dxµ′
dxν′

+ dr2 where ηµ′ν′ = (−,+,+) and r is the coordinate

transverse to the domain wall. Then the supersymmetric flow equations [4, 5] with (2.3)

and (2.2) are described as

dλ

dr
=

8
√

2

7
g ∂λW,

dα

dr
=

√
2

7p2q2
g ∂αW,

dA

dr
= −

√
2 g W. (2.4)

We’ll come back these flow equations when we discuss about the scalar function at IR in

section 4.

The fields of the N = 8 theory transforming in SO(8) representations should be de-

composed into G2 representations. According to the decomposition SO(8) → G2 given

in (A.3) which can be obtained from the branching rules of SO(8) → SO(7) by (A.1) and

SO(7) → G2 by (A.2) we present in the appendix A, the spin 3
2 field breaks into a singlet

and a fundamental of G2

Spin
3

2
: 8 → [1] ⊕ 7 (2.5)

under SO(8) → G2 and the singlet in square bracket corresponds to the massless graviton

of the N = 1 theory. From the further branching rule of G2 → SU(3) by (A.4) one

sees that the above septet(7) which will be located at N = 1 massive gravitino multiplet

breaks into triplet(3) and anti-triplet(3̄) that enter into the component of N = 2 short

massive gravitino multiplet as well as a singlet(1) which enters into the component of

N = 2 massless graviton multiplet under the G2 → SU(3) breaking. Although the global

symmetry G2 is reduced to SU(3), the N = 1 supersymmetry is enhanced to N = 2

supersymmetry.

According to the decomposition SO(8) → G2 given in (A.3), one obtains the following

decomposition by a singlet, two fundamentals, adjoint and a symmetric representation

Spin
1

2
: 56 → 1⊕ [7] ⊕ 7 ⊕ [14] ⊕ 27, (2.6)

and the seven Goldstino modes that are absorbed into massive spin 3
2 fields (2.5) are

identified with septet in square bracket and the adjoint representation fourteen(14) in

square bracket corresponds to the massless vector multiplet of the N = 1 theory. From

the further branching rule of G2 → SU(3) by (A.4) one sees that the above twenty-

seven representation(27) which will be located at Wess-Zumino multiplet breaks into a
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singlet(1)(entering into the component of N = 2 long massive vector multiplet), triplet(3)

and anti-triplet(3̄)(entering into the component of N = 2 short massive gravitino multi-

plet), sextet(6) and anti-sextet(6̄)(entering into the component of N = 2 short massive

hypermultiplet) and octet(8)(entering into the component of N = 2 massless vector mul-

tiplet) under the G2 → SU(3) breaking. Moreover, a singlet in (2.6) which will be located

at Wess-Zumino multiplet goes to the component of N = 2 long massive vector multiplet

while the septet in (2.6) which will be located at massive gravitino multiplet goes to the

component of N = 2 long massive vector multiplet and the component of N = 2 short

massive gravitino multiplet.

For spin 1 field, one has the folllowing breaking under SO(8) → G2 leading to two

fundamentals and adjoint

Spin 1 : 28 → 7⊕ 7 ⊕ [14] (2.7)

which implies that the representation fourteen(14) in square bracket corresponds to the

massless vector multiplet of the N = 1 theory. The two septets which will be located

at massive gravitino multiplet break into two triplets and anti-triplets, that enter into

the component of N = 2 short massive gravitino multiplet, a singlet which enters into

the component of N = 2 massless graviton multiplet and a singlet that enters into the

component of N = 2 long massive vector multiplet under the further G2 → SU(3) breaking.

For spin zero field, the breaking goes to a sum of two singlets, two fundamentals and

two symmetric representations

Spin 0 : 70 → 1 ⊕ 1⊕ [7 ⊕ 7] ⊕ 27⊕ 27 (2.8)

under SO(8) → G2 and the fourteen Goldstone bosons modes are identified with two septets

in square bracket. Their quantum numbers are in agreement with those of massive vectors

in (2.7). The two twenty-seven representations which will be located at Wess-Zumino

multiplet break into two singlets(entering into the component of N = 2 long massive

vector multiplet), triplet and anti-triplet(entering into the component of N = 2 short

massive gravitino multiplet), two sextets and two anti-sextets(entering into the component

of N = 2 short massive hypermultiplet) and two octets(entering into the component of

N = 2 massless vector multiplet) under the further G2 → SU(3) breaking. The remaining

triplet and anti-triplet can be identified with six Goldstone boson modes under the further

G2 → SU(3) breaking. Moreover, two singlets in (2.8) which will be located at Wess-

Zumino multiplet enter into the component of N = 2 long massive vector multiplet.

Finally, from the breaking

Spin 2 : 1 → [1] (2.9)

under SO(8) → G2, this field is located at N = 1 massless graviton multiplet. Of course,

under the SU(3), this enters into the component of N = 2 massless graviton multiplet.

We’ll reorganize (2.5), (2.6), (2.7), (2.8) and (2.9) in the context of supergravity mul-

tiplet with corresponding OSp(1|4) quantum numbers in section 4. The singlets are placed
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at Wess-Zumino multiplet and massless graviton multiplet, septets are located at mas-

sive gravitino multiplet, the adjoints are at massless vector multiplet and twenty seven

representations sit in another Wess-Zumino multiplet.

3. An N = 1 supersymmetric membrane flow in three dimensional de-

formed theory

Let us describe the deformed BL theory by adding eight mass parameters m1, · · · ,m8. The

theory by [12] is closely related to the BL theory. Moreover, it is conjectured in [13] that the

SU(3)I ×U(1)Y -invariant U(2)×U(2) Chern-Simons gauge theory with level k = 1 with the

effective 6-th order superpotential is dual to the background by two units of four-form flux

while the theory at level k = 2 is dual to a Z2 orbifold of the background in [7, 66]. Recall

that the self-dual and anti self-dual tensors that are invariant under the G2 symmetry in

N = 8 gauged supergravity are given by [2, 6, 3, 4, 67, 5, 66, 68]

Y +
ijkl = [(δ1234

ijkl + δ5678
ijkl ) + (δ1256

ijkl + δ3478
ijkl ) + (δ3456

ijkl + δ1278
ijkl )]

+[−(δ1357
ijkl + δ2468

ijkl ) + (δ2457
ijkl + δ1368

ijkl ) + (δ2367
ijkl + δ1458

ijkl ) + (δ1467
ijkl + δ2358

ijkl )],

Y −

ijkl = i[(δ1234
ijkl − δ5678

ijkl ) + (δ1256
ijkl − δ3478

ijkl ) + (δ3456
ijkl − δ1278

ijkl )]

+i[−(δ1357
ijkl − δ2468

ijkl ) + (δ2457
ijkl − δ1368

ijkl ) + (δ2367
ijkl − δ1458

ijkl ) + (δ1467
ijkl − δ2358

ijkl )]. (3.1)

Turning on the scalar fields proportional to Y +
ijkl yields an SO(7)+ invariant vacuum while

turning on the pseudo-scalar fields proportional to Y −

ijkl yields an SO(7)− invariant vacuum.

Simultaneous turning on both scalar and pseudo-scalar fields leads to G2-invariant vacuum

with N = 1 supersymmetry. The choice of the mass parameters we describe corresponds

to the self-dual tensor or anti self-dual tensor for the indices 5678, 3478, 3456, 2468, 2457,

2367, 2358, if we shift all the indices by adding 2 to (3.1), besides an identity. In [63]

there are three mass parameters while in [14] there exist four mass parameters. Then the

fermionic mass terms from [9] are given by

Lf.m. = − i

2
habΨ̄

a
(
m1Γ

78910 + m2Γ
56910 − m3Γ

5678 + m4Γ
46810

+ m5Γ
4679 + m6Γ

4589 − m7Γ
45710 − m81

)
Ψb. (3.2)

The indices a, b, · · · run over the adjoint of the Lie algebra. Then the corresponding

fermionic supersymmetric transformation is given by

δmΨa =
(
m1Γ

78910 + m2Γ
56910 − m3Γ

5678 + m4Γ
46810

+ m5Γ
4679 + m6Γ

4589 − m7Γ
45710 − m81

)
Xa

I ΓIǫ. (3.3)

We impose the constraints on the ǫ parameter that satisfies the 1
8 BPS condition(the number

of supersymmetries is two):

Γ5678ǫ = Γ56910ǫ = Γ78910ǫ = Γ46810ǫ = Γ34910ǫ = Γ3478ǫ = Γ3456ǫ

= −Γ4679ǫ = −Γ4589ǫ = −Γ45710ǫ = −ǫ. (3.4)
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The first three conditions in (3.4) provide 1
4 BPS condition and the remaining seven con-

ditions restrict to the ǫ parameter further and we are left with the right number of super-

symmetry we are dealing with.

Let us introduce the bosonic mass term which preserves N = 1 supersymmetry:

Lb.m. = −1

2
habX

a
I (m2)IJXb

J . (3.5)

Using the supersymmetry variation for Xa
I , δXa

I = iǭΓIΨ
a, and the supersymmetry vari-

ation for Ψa by the equation (3.3), the variation for the bosonic mass term (3.5) plus the

fermionic mass term (3.2) leads to

δL = ihabX
a
I (m2)IJΨ̄bΓJǫ

−ihabΨ̄
a
(
m1Γ

78910 + m2Γ
56910 − m3Γ

5678 + m4Γ
46810

+ m5Γ
4679 + m6Γ

4589 − m7Γ
45710 − m81

)2
Xb

IΓIǫ. (3.6)

In order to vanish this, the bosonic mass term (m2)IJΓJ should take the form

(m2)IJΓJ → (m1 + m2 − m3 + m4 − m5 − m6 + m7 − m8)
2Γ3

+(m1 + m2 − m3 − m4 + m5 + m6 − m7 − m8)
2Γ4

+(m1 − m2 + m3 + m4 − m5 + m6 − m7 − m8)
2Γ5

+(m1 − m2 + m3 − m4 + m5 − m6 + m7 − m8)
2Γ6

+(m1 − m2 − m3 − m4 − m5 + m6 + m7 + m8)
2Γ7

+(m1 − m2 − m3 + m4 + m5 − m6 − m7 + m8)
2Γ8

+(m1 + m2 + m3 − m4 − m5 − m6 − m7 + m8)
2Γ9

+(m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8)
2Γ10 (3.7)

by computing the mass terms for second and third lines of (3.6) explicitly.2 When all the

mass parameters are equal

m1 = m2 = m3 = m4 = m5 = m6 = m7 = m8 = m,

then the diagonal bosonic mass term in (3.7) has nonzero component only for 1010 and

other components(33, 44, 55, 66, 77, 88 and 99) are vanishing. This resembles the structure

of AIJ
1 tensor of AdS4 supergravity where the AIJ

1 tensor has two distinct eigenvalues

with degeneracies 7 and 1 respectively [65, 5]. The degeneracy 1 is related to the N = 1

supersymmetry. Then one obtains the bosonic mass term which appears in (3.5)

(m2)IJ = diag(0, 0, 0, 0, 0, 0, 0, 64m2). (3.8)

2The relevant terms become m2
1 + m2

2 + m2
3 + m2

4 + m2
5 + m2

6 + m2
7 + m2

8 + 2(−m1m2 −m4m7 −m5m6 +

m3m8)Γ
5678+2(m1m3+m4m6+m5m7−m2m8)Γ

56910+2(m1m4+m2m7−m3m6−m5m8)Γ
4679+2(m1m5+

m2m6 + m3m7 −m4m8)Γ
46810 + 2(−m1m6 −m2m5 −m3m4 + m7m8)Γ

45710 + 2(m1m7 + m2m4 + m3m5 −

m6m8)Γ
4589 + 2(m2m3 + m4m5 + m6m7 − m1m8)Γ

78910 explicitly. We also used the conditions (3.4).
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Let us introduce the eight N = 1 superfields as follows:

Φ1 = X3 + · · · , Φ2 = X4 + · · · , Φ3 = X5 + · · · ,

Φ4 = X6 + · · · , Φ5 = X7 + · · · , Φ6 = X8 + · · · ,

Φ7 = X9 + · · · , Φ8 = X10 + · · · , (3.9)

where we do not include the N = 1 fermionic fields. The Φ1, · · · ,Φ7 constitute a fun-

damental 7 representation of G2 while Φ8 is a singlet 1 of G2. The potential in the BL

theory [9] is given by

1

3κ2
habf

a
cde Xc

IX
d
JXe

Kf b
fghXf

I Xg
JXh

K

where κ is a Chern-Simons coefficient. In terms of N = 1 superfields, this contains the

following expressions

1

κ2
habf

a
cde f b

fgh

(
Φc

1Φ
d
2Φ

e
3Φ

f
1Φg

2Φ
h
3 + other terms

)

by using the relation (3.9) between the component fields and superfields. This provides the

superpotential and it is given by [69] with (3.1)

1

κ
fabcdY

+ijkl Tr Φa
i Φ

b
jΦ

c
kΦ

d
l . (3.10)

This form has manifest SO(7)+ global symmetry and by fixing the coefficients of N = 1

superspace action [69] this global symmetry is enhanced to SO(8) symmetry with maximal

supersymmetry. In N = 1 language, the superpotential consisting of the mass term (3.8)

and quartic term (3.10) where we absorbed the κ into the structure constant is given by

W =
1

2
M TrΦ2

8 + (Tr Φ1Φ2Φ7Φ8 + other 6-terms with Φ8)

+ (Tr Φ3Φ4Φ5Φ6 + other 6-terms without Φ8) .

The fourteen terms except the first term are the superpotential required by N = 8 su-

persymmetry and the first term breaks N = 8 down to N = 1. The theory has matter

multiplet in seven flavors Φ1,Φ2, · · · ,Φ7 transforming in the adjoint with flavor symmetry

under which the matter multiplet forms a septet(7) of the N = 1 theory. Therefore, we

turn on the mass perturbation in the UV and flow to the IR. This maps to turning on

certain fields in the AdS4 supergravity where they approach to zero in the UV(r → ∞)

and develop a nontrivial profile as a function of r as one goes to the IR(r → −∞). We can

integrate out the massive scalar Φ8 with adjoint index at a low enough scale and this re-

sults in the 6-th order superpotential Tr(Y +ijk8ΦiΦjΦk)
2 + Tr ǫijklmnpY

+ijk8(ΦlΦmΦnΦp).

The scale dimensions of eight superfields Φi(i = 1, 2, · · · , 8) are ∆i = 1
4 at the UV. This is

because the sum of ∆i is equal to the canonical dimension of the superpotential which is

3 − 1 = 2 [70]. By symmetry, one arrives at ∆i = 1
4 .

Thus we have found N = 1 superconformal Chern-Simons theories with global G2 sym-

metry and k = 1 Chern-Simons gauge theories with G2-invariant superpotential deforma-

tion are dual to the holographic RG flows in [5]. We expect that G2-invariant U(N)×U(N)
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Boundary Operator Energy Spin 0 Spin 1
2

S =
(∑7

i=1 Φ2
i

) 6
5

E0 1

E0 + 1
2 1

E0 + 1 1

Table 2: The OSp(1|4) representations(energy, spin) and G2 representations singlets in the super-

gravity mass spectrum for Wess-Zumino multiplet at the N = 1 critical point and the corresponding

N = 1 superfield S in the boundary gauge theory.

Chern-Simons gauge theory for N > 2 with k = 1, 2 where there exists an enhancement

of N = 8 supersymmetry [12, 13] is dual to the background of [5] with N unit of flux.

In next section, the gauge invariant composites in the superconformal field theory at the

IR in three dimensions are mapped to the corresponding supergravity bulk fields in four

dimensions.

4. The OSp(1|4) spectrum and operator map between bulk and boundary

theories

A further detailed correspondence between fields of AdS4 supergravity in four dimensions

and composite operators of the IR field theory in three dimensions is described in this

section.

The even subalgebra of the superalgebra OSp(1|4) is Sp(4, R) ≃ SO(3, 2) that is the

isometry algebra of AdS4 [71]. The maximally compact subalgebra is then SO(2)E×SO(3)S
where the generator of SO(2)E is the hamiltonian of the system and its eigenvalues E are

the energy levels of states for the system, the group SO(3)S is the rotation group and

its representation s describes the spin states of the system. A supermultiplet, a unitary

irreducible representations(UIR) of the superalgebra OSp(1|4), consists of a finite number

of UIR of the even subalgebra and a particle state is characterized by a spin s and energy

E.

Let us classify the supergravity multiplet, which is invariant under G2, we explained

in section 2 and describe them in the three dimensional boundary theory.

Wess-Zumino multiplet. The conformal dimension ∆, which is irrational and unpro-

tected, is given by ∆ = E0 > 1
2 . Let us denote S(x, θ), that is a scalar superfield, by

the corresponding boundary operator in boundary gauge theory. This scalar field has a

dimension 5
6 (6 +

√
3) in the IR. We’ll come back this issue at the end of this section.

The corresponding OSp(1|4) representations and corresponding N = 1 superfield in three

dimensions are listed in table 2.

Wess-Zumino multiplet. The conformal dimension ∆ for the lowest component of this

multiplet is given by ∆ = E0 > 1
2 . The AdS4 supergravity multiplet corresponds to the

scalar superfield Φ(x, θ). That is, in the θ expansion, there are three component fields

in the bulk. Then the bilinear of the seven Φi superfields by symmetrizing the two G2
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Boundary Operator Energy Spin 0 Spin 1
2

Tr Φ(iΦj) E0 27

E0 + 1
2 27

E0 + 1 27

Table 3: The OSp(1|4) representations(energy, spin) and G2 symmetric representations in the

supergravity mass spectrum for Wess-Zumino multiplet at the N = 1 critical point and the corre-

sponding N = 1 superfield in the boundary gauge theory.

Boundary Operator Energy Spin 1
2 Spin 1 Spin 3

2

Tr DαWβΦj E0 7

E0 + 1
2 7 7

E0 + 1 7

Table 4: The OSp(1|4) representations(energy, spin) and G2 fundamental representations in the

supergravity mass spectrum for massive gravitino multiplet at the N = 1 critical point and the

corresponding N = 1 superfield in the boundary gauge theory.

indices present in them provides a symmetric representation of G2, 27, corresponding to

Tr Φ(iΦj). Note that from the tensor product between two 7’s of SO(7), one writes down

7× 7 = 1s ⊕ 21a ⊕ 27s. Using the branching rule of (A.2), this leads to 1⊕ 7⊕ 14⊕ 27s

under the breaking SO(7) into G2. Therefore, one obtains the symmetric representation

27 of G2. Group theoretically, the structure of this Wess-Zumino multiplet and N = 2

short massive hypermultiplet in [14] looks similar. The symmetric representations 6 and

6̄ of SU(3) originate from only this symmetric representation 27 of G2 when we look at

the branching rule by (A.4). As we observed in section 2, through the supersymmetry

enhancement from N = 1 to N = 2, some other components among the repesentation 27

of G2 distribute into other N = 2 multiplets while the symmetric representations 6 and 6̄

of SU(3) remain and constitute N = 2 short massive hypermultiplet. The corresponding

OSp(1|4) representations and corresponding superfield are listed in table 3.

Massive gravitino multiplet. The conformal dimension ∆ is given by ∆ = E0 > 2.

This corresponds to spinorial superfield Φαβ(x, θ). In the θ expansion, the component

fields in the bulk are located with appropriate quantum numbers. Then one can identify

Tr DαWβΦj with 7 of G2. Although the group structure between this massive gravitino

multiplet and N = 2 short massive gravitino multiplet is different from each other, they

have both fundamental representations and one obtains this multiplet when one takes

N = 1 superderivative Dα on N = 2 short massive gravitino multiplet in [14]. Some of

the fundamental and anti-fundamental representations 3 and 3̄ of SU(3) in N = 2 theory

originate from this fundamental representation 7 of G2 when we look at the branching rule

by (A.4) and some of them come from others 14 and 27 of G2. As we observed in section

2, from N = 1 to N = 2, the singlets among the representation 7 of G2 enter into N = 2

massless graviton multiplet or long massive vector multiplet. The corresponding OSp(1|4)
representations and corresponding superfield are listed in table 4.
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Boundary Operator Energy Spin 1
2 Spin 1 Spin 3

2 Spin 2

Tr DαΦTAΦ E0 = 3
2 [14]

E0 + 1
2 = 2 [14]

DαT βγ E0 = 5
2 [1]

E0 + 1
2 = 3 [1]

Table 5: The OSp(1|4) representations(energy, spin) and G2 representations(adjoints and singlets)

in the supergravity mass spectrum for massless vector and graviton multiplets at the N = 1 critical

point and the corresponding N = 1 superfields in the boundary gauge theory.

N = 1 massless graviton multiplet. The bulk field Φαβγ(x, θ) can be identified with

DαT βγ(x, θ) where T βγ(x, θ) is the stress energy tensor superfield. In components, the

θ expansion of this superfield has the N = 1 supercurrent and the stress energy tensor.

Also in this case, one obtains this multiplet when one takes N = 1 superderivative Dα on

N = 2 massless graviton multiplet in [14]. The conformal dimension ∆ = 5
2 . The structure

of this massless graviton multiplet and N = 2 massless graviton multiplet looks similar

to each other. Some of the singlet representation 1 of SU(3) in N = 2 theory originate

from this singlet representation 1 of G2 when we look at the branching rule by (A.4) and

some of them come from 7 and 27 of G2. The corresponding OSp(1|4) representations and

corresponding superfield are listed in table 5.

N = 1 massless vector multiplet. This conserved vector current is given by a scalar

superfield DαJA(x, θ). This transforms in the adjoint representation of G2 flavor group.

The boundary object is given by TrDαΦTAΦ where the generator TA is N × N matrix

with A = 1, 2, · · · , N2 − 1 for general N . One obtains also this multiplet when one takes

N = 1 superderivative Dα on N = 2 massless vector multiplet in [14] although the group

structure is different from each other but they have both adjoint representations. The

conformal dimension ∆ = 3
2 . By taking a tensor product between two 7’s, one gets this

adjoint 14 of G2 representation as in Wess-Zumino multiplet above. The structure of

this massless vector multiplet and N = 2 massless vector multiplet resembles each other.

Some of the adjoint representation 8 of SU(3) in N = 2 theory originate from this adjoint

representation 14 of G2 when we look at the branching rule by (A.4) and some of them

come from 27 of G2. As we observed in section 2, from N = 1 to N = 2, triplets and

anti-triplets among the representation 14 of G2 enter into N = 2 short massive gravitino

multiplet. The corresponding OSp(1|4) representations and corresponding superfield are

listed in table 5 also.

The 11-dimensional metric with warped product ansatz is given by [65, 72, 5, 66]

ds2
11 = ds2

4 + ds2
7 = ∆(x, y)−1 gµν(x) dxµdxν + Gmn(x, y) dymdyn,

where µ, ν = 1, 2, · · · , 4 and m,n = 1, 2, · · · , 7. The 4-dimensional metric which has a 3-

dimensional Poincare invariance takes the form gµν(x) dxµdxν = e2A(r) ηµ′ν′ dxµ′
dxν′

+dr2,

where ηµ′ν′ = (−,+,+) and r = x4 is the coordinate transverse to the domain wall as

in section 2 and the scale factor A(r) behaves linearly in r at UV and IR regions. The
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metric formula by [65] generates the 7-dimensional metric from the two input data of AdS4

vacuum expectation values for scalar and pseudo-scalar fields (λ, α). Let us introduce the

redefined fields [5]

a ≡ cosh

(
λ√
2

)
+ cos α sinh

(
λ√
2

)
, b ≡ cosh

(
λ√
2

)
− cos α sinh

(
λ√
2

)
.

We recall that the two input data of (a, b) are

a = 1, b = 1 (4.1)

for the SO(8)-invariant UV critical point whereas

a =

√
6
√

3

5
, b =

√
2
√

3

5
(4.2)

for the G2-invariant IR critical point.3

From the standard metric of a 7-dimensional ellipsoid, the diagonal 8× 8 matrix QAB

is given by QAB = diag
(
b2, b2, b2, b2, b2, b2, b2, a2

)
[5, 66] and the 7-dimensional ellipsoidal

metric ds2
EL(7) = dXAQ−1

AB dXB where XA is a coordinate for R8 and A,B = 1, 2, · · · , 8

arises via

ds2
7 = Gmn(x, y) dymdyn =

√
∆ a L2

(
a−2 ξ2 dθ2 + sin2 θ dΩ2

6

)
(4.3)

where the quadratic form ξ2 is given by [65, 5, 66]

ξ2 = a2 cos2 θ + b2 sin2 θ (4.4)

and the warped factor ∆ is given by

∆ = a−1 ξ−
4
3 . (4.5)

The metric dΩ2
6 on S6 ≃ G2/SU(3) in (4.3) preserves the Fubini-Study metric on CP2 [73,

66]. Note that the corresponding base 6-sphere for SU(3)I ×U(1)R-invariant sector [74, 14]

is given by CP3 which is the homogeneous space SU(4)/[SU(3) × U(1)] characterized by

the Kahler form J [75, 66].

As in [7], let us go to the SL(8, R) basis and introduce the rotated vielbeins

U ij
IJ = uij

ab(ΓIJ)ab, V ijIJ = vijab(ΓIJ)ab

U IJ
ij = u ab

ij (ΓIJ)ab, VijIJ = vijab(ΓIJ)ab

where 28-beins and gamma matrices are the same as those in [4]. Now let us define

AijIJ =
1√
2

(
U IJ

ij + VijIJ

)
, B IJ

ij =
1√
2

(
U IJ

ij − VijIJ

)
,

Cij
IJ =

1√
2

(
U ij

IJ + V ijIJ
)

, DijIJ =
1√
2

(
−U ij

IJ + V ijIJ
)

.

3The scalar potential (2.1) can be rewritten as V (a, b) = 1
8
a2

`

a5
− 28a2b + 14a3b2

− 84b3 + 49ab4
´

.
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Then “geometric” T -tensor can be written as

T̃ kij
l =

1

168
√

2
Cij

LM

(
AlmJKDkmKI δL

I xMxJ − B JK
lm Ckm

KI δM
J xLxI

)
(4.6)

and furthermore the “geometric” A1-tensor is given by

Ã ij
1 = T̃ imj

m . (4.7)

The idea of [76] is to replace δIJ in the original T -tensor with xIxJ but δI
J remains un-

changed, as in (4.6).

Now the 88 component of Ã ij
1 , Ã 88

1 , provides the “geometric” superpotential in terms

of a, b and θ and from the complete expressions in appendix B (B.1), one gets

Wgs ≡ |Ã 88
1 |2 = a

3
2

√
(a2 cos2 θ + b2 sin2 θ)2 − 16(ab − 1) sin2 θ cos2 θ. (4.8)

This superpotential is different from WAI in [5], in general. More explicitly, one obtains4

W 2
gs = 4W 2

AI +
1

4W 2
a6 (−2 + ab)2 (−1 + ab) (3 + 4 cos 2θ)2 .

In particular, when θ = cos−1 1
√

8
, one obtains Wgs = W = WAI . Although there are

two different solutions for the superpotential, Wgs and WAI , in 11-dimensions, there exists

the same superpotential W in 4-dimensions. For SO(8) maximal N = 8 supersymmetric

critical point with (4.1), it is easy to check Wgs = 2WAI = W = 1.

Performing the M2-brane probe analysis [77, 76, 8], one can compute the effective

Lagrangian for the probe moving at a small velocity transverse to its world-volume. If the

potential vanishes, then the kinetic term gives us to a metric on the corresponding moduli

space. By combining some part of determinant for the induced metric for M2-brane world-

volume with 3-form potential, one reads off the corresponding potential. Then the potential

has the factor

∆−
3
2 − Wgs = a

3
2
(
a2 cos2 θ + b2 sin2 θ

)
[

1 −
√

1 − 16 (ab − 1) sin2 θ cos2 θ
(
a2 cos2 θ + b2 sin2 θ

)2

]

where we substituted (4.5), (4.4) and (4.8). This potential vanishes for θ = π
2 . Of course,

there exists trivial solution for θ = 0 where the metric becomes zero. On this subspace,

the metric on the 7-dimensional moduli space transverse to the M2-branes is given by

ds2|moduli =
√

aL2 eA dΩ2
6 + eA a

3
2 b2 dr2 (4.9)

where we used the fact that for θ = 0 we have simple relations from (4.4) and (4.5): ξ2 = b2

and ∆ = a−1b−
4
3 .

4The superpotential W is the same as (2.3) W = 1
8

q

a3
ˆ

(a2 + 7b2)2 − 112 (ab − 1)
˜

and the superpo-

tential by [5] is WAI = 1
16W

a3
ˆ`

48(1 − ab) + (a2
− b2)(a2 + 7b2)

´

cos2 θ + 8 (1 − ab) + b2
`

a2 + 7b2
´˜

.
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As we approach the IR critical point, we can introduce a new radial coordinate

u ≃ e
1
2
A(r) with du

dr = 1
L

√
6
5

√
a b u to obtain the asymptotic form for the metric by in-

serting (4.2), (2.4) and the IR critical value of W in table 1 into (4.9)

ds2|moduli =
5

3
4 3

1
8

6
3
4

L2

(
du2 +

6

5
u2 dΩ2

6

)
. (4.10)

Also at the IR critical point, one can see that

d

dr

(
eA(r)√a

)
|IR =

2

L

√
6

5
a b eA(r)|IR

by using the supersymmetric flow equations (2.4) we introduced in section 2. The mass

spectrum for the
√

7
2 λ around G2 fixed point was computed in [6] and it is 5

6

(
6 +

√
3
)
.

At the IR end of the flow, A(r) ∼
2

r

36
√

2 31/4

25
√

5

L r with g ≡
√

2
L from the solution (2.4) for

A(r) and W =
√

36
√

2 31/4

25
√

5
from table 1. Moreover, u ∼ e

s

36
√

2 31/4

25
√

5

L
r ∼ e

A(r)
2 above. Then

S becomes S = (Φ2
1 + · · ·Φ2

7)
6
5 in the boundary theory. The power 6

5 comes from the

factor in the metric (4.10) of the moduli. Obviously, from the tensor product between 7

and 7 of G2 representation, one gets a singlet 1 as before. For the superfield S(x, θ), the

action looks like
∫

d3xd2θS(x, θ). The component content of this action can be worked out

straightforwardly using the projection technique. This implies that the highest component

field in θ-expansion, the last element in table 2, has a conformal dimension 6 + 5
6

√
3 in the

IR as before.

We have presented the gauge invariant combinations of the massless superfields of the

gauge theory whose G2 quantum numbers exactly match the four multiplets in tables 3, 4, 5

observed in the supergravity. There exists one additional Wess-Zumino multiplet in table

2 which completes the picture.

5. Conclusions and outlook

By analyzing the mass-deformed Bagger-Lambert theory(or the mass-deformed U(2)×U(2)

Chern-Simons gauge theory with level k = 1 or 2), preserving G2 symmetry, with the addi-

tion of mass term for one of the eight adjoint superfields, one identifies an N = 1 supersym-

metric membrane flow in three dimensional deformed theory with the holographic N = 1

supersymmetric RG flow in four dimensions. Therefore, the N = 8 gauged supergravity

critical point is indeed the holographic dual of the mass-deformed N = 8 BL theory(or

the mass-deformed U(2) × U(2) Chern-Simons gauge theory with level k = 1 or 2). So

far, we have focused on the particular mass deformation (3.2) preserving G2 symmetry. As

we mentioned in introducation, there are three more nonsupersymmetric critical points,

SO(7)+,SO(7)− and SU(4)−. It would be interesting to find out all the possible cases

for the mass deformations and see how they appear in the AdS4 × X7 background in the

context of U(N) × U(N) Chern-Simons gauge theory.

– 14 –



J
H
E
P
0
7
(
2
0
0
8
)
1
0
1

Acknowledgments

I would like to thank K. Hosomichi for discussion on BL theory and T. Itoh, K. Woo and

J. Hwang for earlier related works on gauged supergravity. This work was supported by

grant No. R01-2006-000-10965-0 from the Basic Research Program of the Korea Science &

Engineering Foundation. I would like to thank the participants and the organizers of the

mini workshop on “Chern-Simons theories for M2-branes at CQUeST” during 6/26-6/27,

2008 for discussions.

A. Branching rules

In this appendix we list some useful branching rules with the help of [78]. In order to

obtain the branching rule SO(8) → G2, we need to consider the following two branching

rules, SO(8) → SO(7) and SO(7) → G2. The former is given by

SO(8) → SO(7) branching rule:

1 → 1,

8v → 8,

8s → 1⊕ 7,

8c → 8,

28 → 7⊕ 21,

35v → 35,

35s → 1⊕ 7 ⊕ 27,

35c → 35,

56v → 8⊕ 48,

56s → 21 ⊕ 35,

56c → 8⊕ 48 (A.1)

and the latter is given by

SO(7) → G2 branching rule:

1 → 1,

7 → 7,

8 → 1⊕ 7,

21 → 7⊕ 14,

27 → 27

35 → 1⊕ 7 ⊕ 27,

48 → 7⊕ 14 ⊕ 27. (A.2)

Combining the two results (A.1) and (A.2), one obtains the following branching rule which

is necessary to analyze the section 2.
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SO(8) → G2 branching rule:

1 → 1,

8 → 1⊕ 7,

28 → 7⊕ 7 ⊕ 14,

56 → 1⊕ 7 ⊕ 7⊕ 14 ⊕ 27,

70 → 1⊕ 1 ⊕ 7⊕ 7⊕ 27 ⊕ 27. (A.3)

It is better to present the following branching rule for the correpondence between N = 1

and N = 2 critical points.

G2 → SU(3) branching rule:

1 → 1,

7 → 1 ⊕ 3 ⊕ 3̄,

14 → 3 ⊕ 3̄ ⊕ 8,

27 → 1 ⊕ 3 ⊕ 3̄⊕ 6 ⊕ 6̄⊕ 8. (A.4)

B. Explicit form for Ã1-tensor

The R8 coordinates xI in (4.6) are related to the ones XI in (4.3) as follows:

X1 ≡ 1√
2
(x2 − x6), X2 ≡ − 1√

2
(x3 − x7),

X3 ≡ 1√
2
(x4 − x8), X4 ≡ − 1√

2
(x1 − x5),

X5 ≡ 1√
2
(x2 + x6), X6 ≡ 1√

2
(x3 + x7),

X7 ≡ 1√
2
(x4 + x8), X8 ≡ 1√

2
(x1 + x5) = cos θ

and we list here for the expressions for Ã1-tensor in (4.7)

Ã 88
1 =

(1 + a + i
√
−1 + ab)3

(2 + a + b)
7
2

[
8 + 16b − 8ab + 12b2 − 12ab2 + a2b2 + 4b3 − 6ab3

+b4 + (a − b)(2 + a + b)(8 + a2 + a(2 − 6b) + b(2 + b)) cos2 θ +
√
−1 + ab

×(−4i(1 + b)(2 + b(2 − a + b)) + 4i(2 + a + b)(2+a+a2 + b − 2ab + b2) cos2 θ)
]
,

Ãmm
1 =

1√
2 + a + b

[
a(1 + a)(b2 + (a − b)(a + b) cos2 θ) − 4(2 + b)(−1 + ab)X2

m

−i
√
−1 + ab(a(b2 + (a − b)(a + b) cos2 θ) + 4(−2 + (−1 + a)b)X2

m)
]
,

Ãmn
1 =

4√
2 + a + b

[
− i(−2 + (−1 + a)b)

√
−1 + ab − (2 + b)(−1 + ab)

]
XmXn, m 6= n

Ãm8
1 =

4(1 + a + i
√
−1 + ab)3

(2 + a + b)
3
2 (a − b + 2i

√
−1 + ab)

[
2 − 2ab + i(a − b)

√
−1 + ab

]
Xm cos θ, (B.1)
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where m,n = 1, 2, · · · , 7. Also one can obtain the full expressions for the Ã2-

tensor of the theory which we do not present here. We have checked from these Ã1

and Ã2-tensors that the scalar potential has a simple form and it is given by V =

2a3
[
a2 + b2 + (a2 − b2) cos 2θ

]2
.
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